
W
izTools.org RESTClient is a Java
application to test RESTful WebServices.
It is also used for testing POX-
WebServices (POX: Plain Old XML) over

HTTP and other HTTP communications.

History
In early 2007, while working on a series of integration projects,
we were using RESTful WebServices. To test our WebServices,
I had started the project WizTools.org RESTClient (rest-client.
googlecode.com). RESTful WebServices itself was born out of
disillusionment with its more complex predecessor, the WS-*
stack. The bigger technology companies, sitting in their ivory
towers had designed the backbone of SOA (Service Oriented
Architecture) using a series of specifications collectively
called the WS-* stack. These include: SOAP, WSDL, UDDI,
WS-Security and WS-Policy, among others [en.wikipedia.
org/wiki/WS-*]. The hacker community, dissatisfied with
the introduced complexity of WS-* stack, named a new
architecture based on HTTP: RESTful WebServices. The word
RESTful WebServices was coined by Roy Fielding in his PhD
thesis, “Architectural Styles and the Design of Network-based
Software Architectures” [www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm].

RESTful WebServices did not aim at protocol
independence. It leverages some lesser-known features

of the HTTP protocol. For example, using normal Web
browsers, we can make HTTP GET and POST requests.
In addition to the common GET and POST, RESTful
WebServices use the following:

PUT
DELETE

Note: The HTTP specification also defines other
request types like HEAD, OPTIONS and TRACE.

Back in 2007, we did not find decent clients to
test these types of HTTP requests. Thus WizTools.org
RESTClient was born.

Usage
RESTClient requires Java 6. To run the program, use the
following command:

$ java -jar restclient-ui-2.3-jar-with-dependencies.jar

Features
The initial idea behind RESTClient was to acquire the
capability to make different kinds of HTTP requests,
including GET, POST, PUT and DELETE. The latest
version of RESTClient also supports other features like
SSL, support for adding custom HTTP headers and

Introducing the WizTools.org RESTClient, a cross-platform tool
to test RESTful WebServices and HTTP communications.

Testing
RESTful
WebServices
Made Easy

40  |  May 2009 | LINUX For yoU | www.LinuxForU.com

Developers  |  Overview ___

www.LinuxForU.com | LINUX For yoU | May 2009 | 41

__ Overview  |  Developers

body, HTTP BASIC and DIGEST authentication.
One prominent feature of RESTClient is the ability to

save requests, responses and the response body. This is often
required for regression testing and proof-of-failure. These
options are available inside the File menu. The related file
extensions are:
1. .rcq—The request format. This is a RESTClient-specific

XML format storing the request details.
2. .rcs—The response format. This also is an XML.
3. .rcr—This is the archive of both request and response

XMLs compressed as a zip file.
Jetty Servlet Container is embedded inside RESTClient. A

servlet that verbosely prints out the request details is attached
to it. To start the server, use the Tools menu. The default
listening port of this server is 10101. This can be changed
during RESTClient start-up using the system property rc:
trace-server-port.

The most powerful feature of RESTClient is its integrated
support for tests. RESTClient has the Groovy programming
language embedded (Figure 2). So test classes can be written
in Groovy. Test classes are based on JUnit 3.x and tests are
attached to each request. For example, a simple test would
look like what’s shown below:

public class SampleClassTest

 extends org.wiztools.restclient.RESTTestCase{

 // Test method names should start with `test’:

 public void testStatus(){

 if(response.getStatusCode() != 200){

 fail(“Response status is not 200!”);

 }

 }

}

As you can observe, the test classes need to extend
org.wiztools.restclient.RESTTestCase. RESTTestCase
internally extends junit.framework.TestCase. The instance of
RESTTestCase has two predefined instance variables available:
request and response. These instances have various convenient
methods to access the request and response details.

request is of type org.wiztools.restclient.RoRequestBean.
Useful methods that may be invoked:

org.wiztools.restclient.HTTPVersion getHttpVersion()
java.net.URL getUrl()
java.util.Map<String, String> getHeaders()
org.wiztools.restclient.RoReqEntityBean getBody()
response is of type org.wiztools.restclient.RoResponseBean.

Some common methods that can be invoked on this, are:
int getStatusCode()
java.lang.String getStatusLine()
java.util.Map<String, String> getHeaders()
java.lang.String getResponseBody()
Both the lists are not exhaustive. Please refer to API docs

for a complete list of methods that may be invoked.

The command line
From version 2.3, RESTClient has two binaries: one GUI
and one command-line. The command-line tool is used for
running requests in a batch and logging their test results. A
typical usage is as follows:

java -jar restclient-cli-2.3-jar-with-dependencies.jar -o /path/to/responseDir *.rcq

Figure 1: RESTClient Swing interface

Figure 2: Writing a Groovy test case in RESTClient

40  |  May 2009 | LINUX For yoU | www.LinuxForU.com

Developers  |  Overview ___

www.LinuxForU.com | LINUX For yoU | May 2009 | 41

__ Overview  |  Developers

This will run all the requests in *.rcq files in the
current working directory, and save the responses (*.rcs)
in the /path/to/responseDir. The command line client
will also print a summary of the test executions.

Extending RESTClient
During the development of version 2.3, the code was
re-factored to a more modular form for extensibility.
Now the code is organised into various modules
managed by Maven. The restclient-lib module has the
core functionality of RESTClient. Having this as the
dependency, various interfaces have been developed
(the RESTClient GUI, CLI and Ant plug-in being
examples). To demonstrate the ease of the API, I will
show you how to write the code to execute a request
and write the response-body in the console. First
add the dependency for restclient-lib in your Maven
project [for a detailed discussion on setting up the
environment, refer to the Cook Book: code.google.com/
p/rest-client/wiki/Cookbook]:

<dependency>

 <groupId>org.wiztools.restclient</groupId>

 <artifactId>restclient-lib</artifactId>

 <version>2.3</version>

</dependency>

Next, write the following code to execute the
request:

import org.wiztools.restclient.Request;

import org.wiztools.restclient.RequestBean;

import org.wiztools.restclient.HTTPMethod;

import org.wiztools.restclient.View;

import org.wiztools.restclient.Implementation;

import org.wiztools.restclient.RequestExecuter;

// Step 1: Create the request:

RequestBean requestBean = new RequestBean();

requestBean.setUrl(new java.net.URL(“http://wiztools.org/”));

requestBean.setMethod(HTTPMethod.GET);

Request request = requestBean;

// Step 2: Write the handler

View view = new View(){

 @Override

 public void doStart(Request request){

 // do nothing!

 }

 @Override

 public void doResponse(Response response){

 System.out.println(response.getResponseBody());

 }

 @Override

 public void doCancelled(){

 // do nothing!

 }

 @Override

 public void doEnd(){

 // do nothing!

 }

 @Override

 public void doError(final String error){

 System.err.println(error);

 }

};

// Step 3: Execute:

RequestExecuter executer = Implementation.of(RequestExecuter.class);

executer.execute(request, view);

This example is taken from the RESTClient Cook
Book [code.google.com/p/rest-client/wiki/Cookbook].
The Cook Book has more details on extending.

What next?
Well, there’s Ant and Maven integration. Ant integration
work has begun but what about any contributors for
Maven?

The team
Various people have contributed to RESTClient through
suggestions, ideas, testing efforts, documentation and
code contribution. I will not be able to list all of them.
But the major contributors, besides me, are:

Ravi Subramaniam: He was a young and energetic
lad. Tragedy struck when we lost him in an accident
in 2008. He had contributed the initial persistence
code.
Jacky Chan: No, he is not the actor! Jacky is from
China, and contributed various bug fixes and
modularisation ideas. But his biggest contribution is
in making a RESTClient plug-in for IntelliJ IDEA.
Velrajan: He has contributed some bug fixes and re-
wrote the persistence code using XOM.
Other people who have made substantial

contributions are Balasubramani S D and Avi Flax.
As I said before, there have been other significant
contributors, and I am thankful to all of them.

By: Subhash Chandran
Subhash is a software developer working in the innovation
department of the Chennai-based software house, Sella
Synergy India Ltd. He has contributed to various Open Source
projects, and publishes his contributions on his site WizTools.
org. He also maintains a technical blog at indiWiz.com. He may
be contacted at: subwiz@gmail.com.

42  |  May 2009 | LINUX For yoU | www.LinuxForU.com

Developers  |  Overview __

